Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Eur J Endocrinol ; 189(3): 387-395, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37695807

RESUMO

OBJECTIVE: Our study aimed to assess the impact of genetic modifiers on the significant variation in phenotype that is observed in individuals with SHOX deficiency, which is the most prevalent monogenic cause of short stature. DESIGN AND METHODS: We performed a genetic analysis in 98 individuals from 48 families with SHOX deficiency with a target panel designed to capture the entire SHOX genomic region and 114 other genes that modulate growth and/or SHOX action. We prioritized rare potentially deleterious variants. RESULTS: We did not identify potential deleterious variants in the promoter or intronic regions of the SHOX genomic locus. In contrast, we found eight heterozygous variants in 11 individuals from nine families in genes with a potential role as genetic modifiers. In addition to a previously described likely pathogenic (LP) variant in CYP26C1 observed in two families, we identified LP variants in PTHLH and ACAN, and variants of uncertain significance in NPR2, RUNX2, and TP53 in more affected individuals from families with SHOX deficiency. Families with a SHOX alteration restricted to the regulatory region had a higher prevalence of a second likely pathogenic variant (27%) than families with an alteration compromising the SHOX coding region (2.9%, P = .04). CONCLUSION: In conclusion, variants in genes related to the growth plate have a potential role as genetic modifiers of the phenotype in individuals with SHOX deficiency. In individuals with SHOX alterations restricted to the regulatory region, a second alteration could be critical to determine the penetrance and expression of the phenotype.


Assuntos
Nanismo , Humanos , Íntrons , Genômica , Lâmina de Crescimento , Fenótipo , Doenças Raras , Proteína de Homoeobox de Baixa Estatura/genética
2.
Horm Res Paediatr ; 95(3): 264-274, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35390795

RESUMO

INTRODUCTION: Isolated SHOX haploinsufficiency is a common monogenic cause of short stature. Few studies compare untreated and rhGH-treated patients up to adult height (AH). Our study highlights a growth pattern from childhood to AH in patients with SHOX haploinsufficiency and analyzes the real-world effectiveness of rhGH alone or plus GnRH analog (GnRHa). METHODS: Forty-seven patients (18 untreated and 29 rhGH-treated) with SHOX haploinsufficiency were included in a longitudinal retrospective study. Adult height was attained in 13 untreated and 18 rhGH-treated (rhGH alone [n = 8] or plus GnRHa [n = 10]) patients. RESULTS: The untreated group decreased height SDS from baseline to AH (-0.8 [-1.1; -0.4]), with an increase in the prevalence of short stature from 31% to 77%. Conversely, the rhGH-treated group had an improvement in height SDS from baseline to AH (0.6 [0.2; 0.6]; p < 0.001), with a reduction in the prevalence of short stature (from 61% to 28%). AH in the rhGH-treated patients was 1 SD (6.3 cm) taller than in untreated ones. Regarding the use of GnRHa, the subgroups (rhGH alone or plus GnRHa) attained similar AH, despite the higher prevalence of pubertal patients and worse AH prediction at the start of rhGH treatment in patients who used combined therapy. CONCLUSION: The use of rhGH treatment improves AH in patients with SHOX haploinsufficiency, preventing the loss of height potential during puberty. In peripubertal patients, the addition of GnRHa to rhGH allows AH attainment similar to the AH of patients who start rhGH alone in the prepubertal age.


Assuntos
Estatura , Nanismo , Hormônio do Crescimento Humano , Proteína de Homoeobox de Baixa Estatura , Adulto , Estatura/genética , Criança , Nanismo/tratamento farmacológico , Hormônio Liberador de Gonadotropina , Haploinsuficiência , Hormônio do Crescimento Humano/uso terapêutico , Humanos , Estudos Retrospectivos , Proteína de Homoeobox de Baixa Estatura/genética
3.
Horm Res Paediatr ; 95(1): 51-61, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35176743

RESUMO

INTRODUCTION: Pubertal delay is described as one of the clinical features in Noonan syndrome (NS) and it may be one of the factors causing short adult height in those patients. The present study aimed at characterizing pubertal development in NS and identifying pubertal delay predictors. METHODS: We analyzed 133 individuals with a molecular diagnosis of NS and clinical puberty evaluation. We characterized delayed puberty as pubertal onset after 12 years in girls and 13.5 years in boys, according to parameters of the Brazilian population. To investigate its predictors, we correlated the age at onset of puberty with several characteristics and genotype in a multilevel regression model. For comprehending pubertal development in NS, we assessed age and anthropometric measures at each Tanner stage and adult age. RESULTS: The mean age at puberty onset for girls was 11.9 ± 1.9 years and for boys, 12.5 ± 1.7 years, significantly later than the Brazilian population (p = 0.025; p < 0.001). Girls (49.1%) presented delayed puberty more frequently than boys (27.9%, p = 0.031). Body mass index standard deviation scores (SDS) and insulin growth factor 1 SDS at puberty onset significantly predicted later puberty entry. Height gain from the onset of puberty to adult height was lower in children with pubertal delay. CONCLUSION: Pubertal delay is characteristically found in children with NS, more frequently in females. The low weight of patients with NS could modulate the age of puberty, just as the increase in overweight/obesity in the general population has shown an effect on reducing the age of onset of puberty.


Assuntos
Síndrome de Noonan , Puberdade Tardia , Estatura , Feminino , Humanos , Síndrome de Noonan/genética , Fenótipo , Puberdade
4.
Arch. endocrinol. metab. (Online) ; 63(6): 608-617, Nov.-Dec. 2019. tab, graf
Artigo em Inglês | LILACS | ID: biblio-1055027

RESUMO

ABSTRACT The somatotropic axis is the main hormonal regulator of growth. Growth hormone (GH), also known as somatotropin, and insulin-like growth factor 1 (IGF-1) are the key components of the somatotropic axis. This axis has been studied for a long time and the knowledge of how some molecules could promote or impair hormones production and action has been growing over the last decade. The enhancement of large-scale sequencing techniques has expanded the spectrum of known genes and several other candidate genes that could affect the GH-IGF1-bone pathway. To date, defects in more than forty genes were associated with an impairment of the somatotropic axis. These defects can affect from the secretion of GH to the bioavailability and action of IGF-1. Affected patients present a large heterogeneous group of conditions associated with growth retardation. In this review, we focus on the description of the GH-IGF axis genetic defects reported in the last decade. Arch Endocrinol Metab. 2019;63(6):608-17


Assuntos
Humanos , Fator de Crescimento Insulin-Like I/genética , Hormônio do Crescimento Humano/deficiência , Hormônio do Crescimento Humano/genética , Transtornos do Crescimento/genética , Mutação/genética , Fenótipo , Fator de Crescimento Insulin-Like I/metabolismo , Transdução de Sinais , Genótipo , Transtornos do Crescimento/metabolismo
5.
Arch Endocrinol Metab ; 63(1): 70-78, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30864634

RESUMO

Short stature is a common feature, and frequently remains without a specific diagnosis after conventional clinical and laboratorial evaluation. Longitudinal growth is mainly determined by genetic factors, and hundreds of common variants have been associated to height variability among healthy individuals. Although isolated short stature may be caused by the combination of variants, with a deleterious impact on the growth of individuals with polygenic inheritance, recent studies have pointed out some monogenic defects as the cause of the growth disorder observed in nonsyndromic children. The majority of these defects are in genes related to the growth plate cartilage and in the growth hormone (GH) - insulin-like growth factor 1 (IGF-1) axis. Affected patients usually present the mildest spectrum of some forms of skeletal dysplasia, or subtle abnormalities of laboratory tests, suggesting hormonal resistance or insensibility. The lack of specific characteristics, however, does not allow formulation of a definitive diagnosis without the use of broad genetic studies. Thus, molecular genetic studies including panels of genes or exome analysis will become essential in investigating and identifying the causes of isolated short stature in children, with a crucial impact on treatment and follow-up.


Assuntos
Estatura/genética , Variação Genética/genética , Transtornos do Crescimento/genética , Hormônio do Crescimento Humano/genética , Fator de Crescimento Insulin-Like I/genética , Humanos
6.
Arch. endocrinol. metab. (Online) ; 63(1): 70-78, Jan.-Feb. 2019. tab, graf
Artigo em Inglês | LILACS | ID: biblio-989290

RESUMO

ABSTRACT Short stature is a common feature, and frequently remains without a specific diagnosis after conventional clinical and laboratorial evaluation. Longitudinal growth is mainly determined by genetic factors, and hundreds of common variants have been associated to height variability among healthy individuals. Although isolated short stature may be caused by the combination of variants, with a deleterious impact on the growth of individuals with polygenic inheritance, recent studies have pointed out some monogenic defects as the cause of the growth disorder observed in nonsyndromic children. The majority of these defects are in genes related to the growth plate cartilage and in the growth hormone (GH) - insulin-like growth factor 1 (IGF-1) axis. Affected patients usually present the mildest spectrum of some forms of skeletal dysplasia, or subtle abnormalities of laboratory tests, suggesting hormonal resistance or insensibility. The lack of specific characteristics, however, does not allow formulation of a definitive diagnosis without the use of broad genetic studies. Thus, molecular genetic studies including panels of genes or exome analysis will become essential in investigating and identifying the causes of isolated short stature in children, with a crucial impact on treatment and follow-up.


Assuntos
Humanos , Variação Genética/genética , Estatura/genética , Fator de Crescimento Insulin-Like I/genética , Hormônio do Crescimento Humano/genética , Transtornos do Crescimento/genética
7.
Arch Endocrinol Metab ; 63(6): 608-617, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31939486

RESUMO

The somatotropic axis is the main hormonal regulator of growth. Growth hormone (GH), also known as somatotropin, and insulin-like growth factor 1 (IGF-1) are the key components of the somatotropic axis. This axis has been studied for a long time and the knowledge of how some molecules could promote or impair hormones production and action has been growing over the last decade. The enhancement of large-scale sequencing techniques has expanded the spectrum of known genes and several other candidate genes that could affect the GH-IGF1-bone pathway. To date, defects in more than forty genes were associated with an impairment of the somatotropic axis. These defects can affect from the secretion of GH to the bioavailability and action of IGF-1. Affected patients present a large heterogeneous group of conditions associated with growth retardation. In this review, we focus on the description of the GH-IGF axis genetic defects reported in the last decade. Arch Endocrinol Metab. 2019;63(6):608-17.


Assuntos
Transtornos do Crescimento/genética , Hormônio do Crescimento Humano/deficiência , Hormônio do Crescimento Humano/genética , Fator de Crescimento Insulin-Like I/genética , Mutação/genética , Genótipo , Transtornos do Crescimento/metabolismo , Humanos , Fator de Crescimento Insulin-Like I/metabolismo , Fenótipo , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...